·电脑关机后光电鼠标还亮着·光电鼠标仅售19元 近期最超值键鼠大搜捕·光电鼠标常见故障全解决·鉴定光电鼠标质量好坏的几点方法·双飞燕X5-57D光电鼠标 高效便捷时代新宠·光电鼠标完全优化指南·别具创意 罗技LX7无线光电鼠标降至240元·光电鼠标实体大曝光!·只需45元 新盟梦幻七彩光电鼠标就拿回家·罗技光电鼠标LX3价格降至谷底 139元就拿
(图1,光电鼠标的外壳)
2.按键板设计 鼠标上盖的主要部件就是按键板了,光电鼠标的按键板分为按钮式、盖板式和一体式3种设计。其中,按钮式按键板是独立按钮,与鼠标上盖没有连接;盖板式按键板与上盖有所连接,但也有独立的部分;而一体式按键板是现今最为流行的,按键板本身就是鼠标上盖的一部分。微软和罗技的很多产品都采用了这种方式。 3.底部垫脚设计 为了使光电鼠标移动更灵活,减少底部的摩擦力,所以引入了垫脚的概念:用塑料片将鼠标底部垫起,从而减少摩擦。鼠标垫脚的设计主要分为以微软为代表的大垫脚派和以罗技为代表的小垫脚派,各有利弊。前者因为垫脚尺寸大,材质偏软,所以比后者耐摩、防尘;后者因为垫脚尺寸不足前者一半,材质坚硬,所以受力面积小,比前者更灵活。笔者个人认为,对于普通玩家,前者的垫脚设计更适用;而对于发烧级的游戏玩家,后者却是首选。 4.鼠标滚轮 1996年,微软发明了鼠标滚轮按键,由于给使用者提供了更多方便,所以时至今日,几乎所有鼠标上都能看到它的身影。滚轮按键设计通常包括两种,第一种是以微软为代表的机械式滚轮,第二种是以罗技为代表的光电式滚轮。前者利用滚轮带动机械电位器来获得滚动信息,定位更准;后者利用发光二极管获得滚动信息,寿命更长。 5.人体工程学设计的利弊 对于光电鼠标来说,人体工程学设计的目的就是让用户可在手指自然放松的情况下,手掌紧贴在鼠标表面。但即使使用采用人体工程学设计的光电鼠标,也可能无法获得舒适的手感。这是因为厂家只可能以部分消费者的手型数据为准,生产符合人体工程学的鼠标模具,而对于另一部分消费者来说,使用该产品时,反而可能更加劳累。 二、光电鼠标内部的主要元器件(图3,光电鼠标的PCB基板)
光电鼠标内部主要包括“发光二极管”、“固定夹”、“光学透镜”、“光学传感器”、“接口控制器芯片”以及“微动开关”6部分元器件。 1.发光二极管 发光二极管相当于光电鼠标的光源,其主要任务是满足光学传感器的拍摄需要,将所要拍摄的“路况”照亮。除此以外,发光二极管还被用来满足光电式的滚轮的需要。这里所说的滚轮是我们常用来翻动网页的鼠标中键,不要误认为是光机鼠标底部的轨迹球。 为光学传感器服务的发光二极管在鼠标“尾部”,会被固定夹遮盖起来;而为光电式滚轮服务的发光二极管则在鼠标“头部”,也就是滚轮位置附近。所以,虽然光电鼠标内部可能拥有不止一个发光二级管,但分辨起来并不难。 小知识:光电鼠标发红光的原因 因为红色高亮度的发光二极管问世最早,无论是技术还是产业化都最成熟,成本也最低廉,寿命更容易得到保障,所以大部分光电鼠标都采用了发红光的二极管。当然,我们在市场上也会看到其他颜色的产品,但这是为了迎合部分玩家标新立异的需求,和性能无关。
(图4,光电鼠标内部的发光二极管)
2.固定夹 负责照亮鼠标底部的发光二极管拥有很强的亮度,为了避免射出的光线干扰其他元器件工作,并且使光线通过透镜后能量更加集中,所以发光二级光上覆盖了固定夹。固定夹通常是黑色的,因为黑色吸收光线的能力最好。
图5,光电鼠标的固定夹)
3.光学透镜 光学透镜系统通常由一面棱光透镜和一面圆形透镜组成。发光二极管射出的光线先通过一面棱光透镜照亮鼠标底部表面,而反射回来的投影再经过另一面圆形透镜汇聚到光学传感器的小孔里。作为光线传递的必经之路,透镜系统的重要性不言而喻了。(图6,光电鼠标的透镜)
4.光学传感器 光学传感器是光电鼠标的核心部件,“CMOS感光器”和“数字信号处理器(DSP)”是其中最重要的两部分。CMOS感光器是一个由数百个光电器件组成的矩阵,恰似一部相机,用来拍摄鼠标物理位移的画面。光学传感器会将拍摄的光信号进行放大并投射到CMOS矩阵上形成帧,然后再将成帧的图像由光信号转换为电信号,传输至数字信号处理器进行处理。DSP对相邻帧之间差别进行除噪和分析后,将得出的位移信息通过接口电路传给计算机。(图7,这是一款微软制造的光学传感器)
5.接口控制器芯片
接口控制器芯片负责管理光电鼠标的接口电路部分,使鼠标可以通过USB、PS/2等接口与PC相连。基于成本方面考虑,各品牌的光电鼠标一般都采用第三方的接口控制器芯片,而像赛普拉斯、凌阳、EMC都是常见的接口控制器芯片厂商。另外,有的光电鼠标选用了具备接口控制器功能的光学传感器(比如原相公司的PAN401光学传感器),所以在这类光电鼠标内部是无法发现独立的接口控制器芯片的。(图8,这就是一款赛普拉斯的接口控制器芯片)
6.微动开关 平时使用一款光电鼠标时,打交道最多的要算是鼠标按键了,而鼠标按键一一对应着内部的微动开关,所以按键板设计和微动开关的品质共同决定了鼠标的手感。当然,微动开关的质量还影响着光电鼠标的故障率。因此,有的厂商会在宣传材料中声明自己的某款型号产品使用了高档的微动开关,从而吸引消费者购买。
(图9,光电鼠标采用的微动开关)
三、光电鼠标的定位原理 看了上面的介绍,相信读者朋友对光电鼠标的定位原理已经有所了解了。下面,我们总结一下:发光二极管照亮采样表面,对比度强烈的待采样影像通过透镜在CMOS上成像,CMOS将光学影像转化为矩阵电信号传输给DSP,DSP则将此影像信号与存储的上一采样周期的影像进行比较分析,然后发送一个位移距离信号到接口电路。接口电路对由DSP发来的位移信号进行整合处理,而已传入计算机内部的位移信号再经过驱动程序的进一步处理,最终在系统中形成光标的位移。(图10,光电鼠标定位示意图)
小知识:光电鼠标和激光鼠标区别 光电鼠标并不等于激光鼠标,两者的显示原理有所区别。比如,光电鼠标需要透镜支持,而部分激光鼠标则不需要。这类激光鼠标的成像原理是将激光照射在物体表面,产生的干涉条纹可直接产生光斑点反射到传感器上,因此省略了传统的光学透镜系统,理论上这样反馈的图像更精确。 另外,人造红宝石激光发生器和特制的半导体二极管都可产生激光。前者可生成可见激光,但成本高昂,很少会使用在鼠标领域中;后者可生成不可见激光,成本相对低廉,市面上出售的激光鼠标大多采用这种方式。所以说,工作时底部是否发光,也可作为光电鼠标和激光鼠标的一个明显区别。 四、光电鼠标的重要参数 1.光电鼠标的分辨率 光电鼠标的分辨率通常用CPI来表示,CPI越高,越利于反映玩家的微小操作。而且在鼠标光标移动相同逻辑距离时,分辨率高的需要移动的物理距离则要短。拿一款800 CPI的光电鼠标来说,当使用者将鼠标移动1英寸时,其光学传感器就会接收到反馈回来的800个不同的坐标点,鼠标箭头同时会在屏幕上移动800个像素点。反过来,鼠标箭头在屏幕上移动一个像素点,就需要鼠标物理移动1/800英寸的距离。所以,CPI高的鼠标更适合在高分辨率的屏幕下使用。光学机械鼠标的分辨率多为200~400 CPI,而光电鼠标的分辨率通常在400~800 CPI之间。(出处:http://www.sheup.com)
(出处:http://www.sheup.com)
(出处:http://www.sheup.com/)