深入分析:我们为何需要DDR2内存技术(多图)

深入分析:我们为何需要DDR2内存技术(多图) - 电脑诊所 - 电脑教程网

深入分析:我们为何需要DDR2内存技术(多图)

日期:2007-07-17   荐:
  最近,假如你仔细的观察PC领域发生的变化,你就会注意的一个新鲜的术语“DDR2”频频出现。顾名思义,DDR2就是第二代双倍速率同步动态随机存储器,这个名字听上去很拗口,实际上我们只要知道它的缩写是DDR SDRAM就行了。就目前的发展看来,DDR2绝对不是纸上谈兵,它的平台已经准备好了,不出意外的话,Intel七月份就会发布支持DDR2的芯片组925X和915。明年,DDR2就会成为PC上普遍使用,甚至是主流的内存类型   因此,我们应该了解DDR2和它的前一代产品有什么区别,它有什么优势和不足之处。换句话说,我们试图去领会,工业界为什么需要引入这种新的内存类型。    当前的处理器主频和I/O带宽都很高,需要内存提供很高的数据传输率来配合。要知道内存带宽至少要和前端总线带宽同步,这样才不至于影响处理器性能的发挥。而且处理器的速度提升还在不断的进行中,内存需要每秒钟提供更多的数据来满足处理器的要求。目前的内存速度提升已经相当困难,这时候转变到DDR2不失为合理的时机,它提供了一条提高内存带宽的康庄之道,可以缓解当前遇到的很多问题。    提高内存性能的两个途径   内存的性能通过下面的公式来计算:   速度=位宽×频率   速度用来表示内存的性能(MB/s),位宽是指内存总线的宽度(bit),频率当然就是指数据传输的频率,注意,这里说的是数据传输的频率,而不是内存的工作频率,在DDR时代,数据传输频率是内存工作频率的二倍。   因此,提高性能有两种方式,增加内存总线的位宽或者是提高内存工作的频率。好的,让我们来看看内存如今的状态是怎么样。   虽然内存发展出很多的类型,但是它们都是基于原始的DRAM单元,实际上,它是一个晶体管和一个电容的结合体,很简单但也很高效。有很多尝试希望丢弃这种阵旧的以晶体管为基础的存储方式,出现了一些新的存储技术,如MRAM(Magnetoresistive RAM),FRAM (Ferroelectric RAM)等,但是它们都没有获得足够的成功。没有其它内存类型能够提供一个和DRAM相似的,结合了容量,价格和速度的解决方案。   当然还有很多快速的基本单元结构,象静态内存(SRAM),它不象动态内存那样需要刷新(预充电),但是它的每个存储单元耗用了大量的晶体管,它太贵太大了,因此内存芯片不能够达到足够大的容量,还有一些廉价的解决方案,但是它们的性能无法用于PC的主内存系统。   换句话说,基本的DRAM架构仍然是现代内存类型的基础,因此,所有的现代内存类型都继承了DRAM的优点和缺点:它需要刷新(预充电,不然随着漏电,DRAM中的数据会消失),以及有操作频率的上限(这也是用电容充电来存储数据的弊病)。来谈谈最后的参数,你能够注意到时钟频率是很长时间以来DRAM唯一改变的地方。当PC的其它子系统变得越来越快时,只有经典的内存单元组织结构很难提高它的时钟频率。实际上,时钟频率的提升完全要归功于半导体工艺的进步,DRAM的结构没对频率提升做出贡献。   今天,只有那些特别挑选的内存存储阵列的工作频率能达到275MHz(如Hynix发布的DDR550),这些都是成本高昂的产品,无法达到大批量生产。需要注意的是内存存储阵列的频率是无法达到550MHz的,这里说的是内存的传输速度。   因此,我们只剩下一条路,那就是增加内存总线的宽度,但是,这个方法受到了很多限制:今天,标准平台使用双通道128bit内存总线,它的设计,布线已经比原来64位内存通道的主板复杂了很多,几乎很难在合理的成本下再提高内存总线位数。继续增加总线宽度,不但成本高昂,而且带来的电磁干扰会造成极大的负面影响。   看来,我们给自己制造了一个死锁,内存单元无法提高频率,内存总线位宽也不能轻易增加,我们该何去何从?   DDR2内存就是解决方案   SDRAM (Synchronous Dynamic Random-Access Memory)   首先,让我们回忆一下已经被放弃的SDRAM的工作原理,实际上,它内部包括了许多存储单元阵列,以及输入/输出缓存和电源/刷新电路,最后一个单元(电源/刷新电路)和我们下面的描述没有关系。它的三个子系统(存储单元阵列,输入/输出缓存)都以相同的频率工作,这就是它为什么称为同步内存的原因。举例来说,一个100MHz,64位总线宽度的SDRAM,内存的数据通过I/O缓存然后到达内存控制器。这个内存模组就是我们所熟知的PC100内存,它的带宽为800MB/s(100MHz×8 bytes或64 bits),每个时钟周期传输一次数据,它在时钟的上升沿传输数据。   DDR (Double Data Rate SDRAM)   DDR之所以叫这个名字,是因为它能够以相同频率SDRAM的两倍来传输数据,也就是说,每时钟周期传输两次数据,它在时钟信号的上升沿和下降沿传输数据。但是加倍的数据从何而来,设计人员使用了一个小小的诡计:内存的存储单元工作在相同的时钟频率下,但是内部总线加宽,以这种方式推进内存模组的速度。换句话说,从内部阵列到缓存之间的总线宽度是外部总线(buffer到控制器)的两倍,结果就使得缓存到控制器的数据传输率达到内部存储单元工作频率的两倍。也就是说,存储单元使用一个很宽但较慢的总线,但是当数据传输到控制器时使用了一个较窄但是快速的总线。   如果以实际的数字来衡量,SDRAM内部的存储阵列的总线是32位,工作频率为100MHz,缓存到外部控制器的总线也是32位,工作频率100MHz。这里数据流没什么改变,内部和外部总线宽度与频率都没有变化,SDRAM模组通过同步读取两颗芯片达到64位的带宽。   DDR的情况有所不同,内部的存储阵列通过一条64位,100MHz的总线连接I/O缓存(或者叫信号放大器),但是数据到内存控制器需要两次通过32位的总线。换句话说,每时钟周期传输两次数据,分别通过时钟的上升沿和下降沿传输信号。结果就是,数据传输率是内部存储阵列频率的两倍。我们可以描绘一个明显的场景:数据流慢慢通过宽的管道,然后进入一个狭窄的管道,但是流动的速度更快。DDR内存模组也是64位,模组上的两颗芯片同步读写。
[1] [2]  

  这样的内存被称为DDR200(通过数据传输率来命名)或者称为PC1600。实际上,内部的DRAM存储单元在DDR266内存中的工作频率是133MHz,在DDR333中,存储阵列的工作频率是166MHz,DDR400中的存储阵列工作频率是200MHz,目前最快的DDR SDRAM的频率(这里不包括那些超频的内存)达到了550MHz,它的内部阵列工作频率达到275MHz,这个频率已经很难再继续提高。此时,就需要一个新的内存标准可以在今后一段时间内保证内存频率和性能可以稳定的提高。   DDR2   通过上面对DDR SDRAM的讲解,DDR2的特性就很容易理解了,和DDR一样,它的内部存储阵列到I/O缓存之间通过一条宽敞的64位,100MHz总线,但是数据从缓存传输到外部控制器通过一条快速而狭窄的总线(16位,200MHz),外部总线仍然使用双倍传输数据的策略,我们得到的数据传输率为400MHz。因此,64位模组需要同时使用4个段(banks)。这个内存模组被称为DDR2-400,它的标记方法和DDR内存相同,都是以内存的数据传输率来标识。

图为各种内存工作原理对比图

  因此,以同样100MHz频率工作的DRAM存储单元,我们使用不同的内存模组宽度,得到不同的内存带宽,SDRAM是800MB/s,DDR SDRAM是1600MB/s,DDR2 SDRAM则达到了3200MB/s的数据传输率!感谢多路复用技术,内存模组通过同时使用低速的内存阵列可以达到高带宽,哈哈,这不就是我们期盼的解决之道吗。   下面会详细解析DDR2的多路复用技术,实际上就是prefetch(数据预取技术)

(出处:http://www.sheup.com)


 [1] [2] 

标签: